A New Heuristic Optimization: Search and Rescue Algorithm and Solving the Function Optimization Problems

نویسندگان

چکیده

Heuristic techniques are optimization methods that inspired by nature. Although there many heuristics in the literature, a new heuristic technique is presented researchers every day observing nature-based or living behaviors In this study, human behavior proposed. order to prove validity of method called Search and Rescue Optimization Algorithm (AKOA), applied find global minimums function test problems literature. As result experiments performed on 21 minimization problems, it has been observed AKOA quite competitive when compared Dynamic Random Technique Selection Walk Technique.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function

In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...

متن کامل

PSEUDO-RANDOM DIRECTIONAL SEARCH: A NEW HEURISTIC FOR OPTIMIZATION

Meta-heuristics have already received considerable attention in various fields of engineering optimization problems. Each of them employes some key features best suited for a specific class of problems due to its type of search space and constraints. The present work develops a Pseudo-random Directional Search, PDS, for adaptive combination of such heuristic operators. It utilizes a short term...

متن کامل

FOA: ‘Following’ Optimization Algorithm for solving Power engineering optimization problems

These days randomized-based population optimization algorithms are in wide use in different branches of science such as bioinformatics, chemical physics andpower engineering. An important group of these algorithms is inspired by physical processes or entities’ behavior. A new approach of applying optimization-based social relationships among the members of a community is investigated in this pa...

متن کامل

A New Local Search Based Ant Colony Optimization Algorithm for Solving Combinatorial Optimization Problems

Ant Colony Optimization (ACO) algorithms are a new branch of swarm intelligence. They have been applied to solve different combinatorial optimization problems successfully. Their performance is very promising when they solve small problem instances. However, the algorithms’ time complexity increase and solution quality decrease for large problem instances. So, it is crucial to reduce the time r...

متن کامل

Introducing a new meta-heuristic algorithm based on See-See Partridge Chicks Optimization to solve dynamic optimization problems

The SSPCO (See-See Particle Chicks Optimization) is a type of swarm intelligence algorithm derived from the behavior of See-See Partridge. Although efficiency of this algorithm has been proven for solving static optimization problems, it has not yet been tested to solve dynamic optimization problems. Due to the nature of NP-Hard dynamic problems, this algorithm alone is not able to solve such o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Social Science Research Network

سال: 2021

ISSN: ['1556-5068']

DOI: https://doi.org/10.2139/ssrn.3902584